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Abstract. By generalising earlier results, we prove that whenever a Lagrangian dynamical 
system can be associated with a (1,l)-type tensor field which is left invariant by the 
dynamics, satisfies the Nijenhuis condition and is compatible with the tangent bundle 
structure, the system necessarily decomposes into a collection of lower-dimensional 
mutually non-interacting Lagrangian subsystems. 

1. Introduction 

In recent years, there has been a renewal of interest both in tangent bundle geometry 
and in Lagrangian dynamics, which has revealed (or at least emphasised, mainly for 
physicists) some rich geometric structures which are naturally present on the tangent 
bundle. One such relevant geometric structure is the so-called vertical endomorphism, 
a (1, 1)-type tensor field whose associated Nijenhuis tensor vanishes such that its image 
(in 2’( T M ) ,  the algebra of vector fields on the tangent bundle TM of a differentiable 
manifold M )  coincides with its kernel (Grifone 1972, Klein 1983, Crampin 1983a, b). 
This has led to the concept of an integrable almost tangent manifold (Brickell and 
Clark 1974), a generalisation of the tangent bundle similar to the one leading from 
the cotangent bundle to a general symplectic manifold. 

Another problem which has witnessed a renewal of interest is the so-called inverse 
problem of the calculus of variations (Helmholtz 1887, Darboux 1894, Havas 1957). 
It has to do with the classification of the ‘inequivalent’ (i.e. not differing by mere 
multiplication through a constant, or by the addition of a ‘gauge’ (a total time derivative) 
term) Lagrangian descriptions of a given second-order dynamics on the tangent bundle 
(Currie and Saletan 1966, Sarlet and Cantrijn 1978, Giandolfi et a1 1981, Henneaux 
1982, 1984, Crampin 1981, 1983b, Sarlet 1983). The ambiguities that can arise in the 
quantisation procedure have already been pointed out (Marmo and Saletan 1978, 
Balachandran et a1 1978). 

Although it can be argued that the Lagrangian description is generically unique 
(Henneaux 1982, Marmo and Rubano 1985, 1986), the possibility of genuinely alterna- 
tive Lagrangians for the same dynamical system remains an interesting problem, mainly 
in cases where special symmetries are present. 

An offspring of the study of alternative Lagrangians has been the possibility of 
associating to every pair of them (assuming at least one of the Lagrangians to be 
regular) a (1, 1)-type tensor field connecting the corresponding Lagrangian 2-forms 

0305-4470/87/113225 + 12$02.50 0 1987 IOP Publishing Ltd 3225 



3226 C Ferrario et a1 

(Marmo 1982, De Filippo et a1 1982, 1984, Crampin 1983a, b, Carifiena and Ibort 
1983, Henneaux 1981, Hojman and Harleston 1981, Lutzki 1982). The tensor field 
thus defined is also connected with the admissible Lax representations (Lax 1968, 
1975, 1976) for the dynamical system at hand (De Filippo er al 1983, Marmo and 
Rubano 1983). At the same time, it turned out that the spectral properties of the 
above-mentioned tensor field could be used to give conditions for the complete 
integrability of the dynamical system, i.e. for the existence of a sufficient number (in 
the sense of Liouville’s theorem (Arnold 1976)) of constants of the motion pairwise 
in involution (Crampin et a1 1983a, b). Such a geometric characterisation of complete 
integrability is an interesting result in its own right, but its interest resides also in the 
possibility of carrying it over to the infinite-dimensional case, i.e. of using it as a tool 
in the study of the integrability of non-linear field theories (De Filippo et al 1983). 

By pursuing the study of the completely integrable case, we have recently established 
(Ferrario et al 1985) a theorem proving that, if the conditions of complete integrability 
given by Crampin et a1 (1983a, b) are fulfilled, then one can ‘diagonalise’ both the 
dynamical system and a class of inequivalent (or ‘alternative’) Lagrangians by means 
of a suitable point transformation. In other words, there exists a system of local 
coordinates in which both the dynamics (represented by a second-order vector field 
on T M )  and the Lagrangians split into a sum of as many mutually independent 
one-dimensional dynamical (Lagrangian) systems as there are degrees of freedom in 
the original problem. 

In the present paper, we prove a similar theorem in a broader context, and also 
under somewhat reduced hypotheses, namely, we will prove that the theorem also 
holds if the system under examination is not necessarily completely integrable. The 
subsystems into which the original system splits will not all be one dimensional, of 
course. Also, we will show that one can dispense with one of the hypotheses which 
played a crucial role in both the proofs of Ferrario et al (1985) and Crampin et al 
(1983), i.e. that the eigenvalues of the ( 1 , l )  tensor be nowhere constant. This is a 
desirable feature of the proof, since the above hypothesis often fails to be fulfilled, 
even for simple examples. 

The paper is organised as follows: in 9 2 we state the problem, define the (1, 1) 
tensor, review its main properties and discuss the Nijenhuis condition. This section 
also serves to define the notation which will be used throughout the paper. Section 3 
will be devoted to the proof of the theorem and to the discussion of a simple example. 
In 0 4, we discuss the results and draw some final conclusions. 

2. (1, 1)-type fields of the Nijenhuis type associated with Lagrangian dynamics 

Let Q be a smooth manifold, TQ its tangent bundle, rr : TQ -j Q the canonical projec- 
tion. Local coordinates in a tangent bundle atlas for TQ will be denoted by ( q i ,  u i ) ,  
i = 1, . . . , n = dim Q, the 4 i  being local coordinates for the base manifold Q. Among 
the (intrinsic) geometric objects which can be defined on TQ, we will mainly need the 
following. 

(i)  The field of dilations (or Liouville field) along the fibres. It is the vertical field 
A E E( TQ) whose local expression is 

a 
au 

A = U i i .  
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(ii) The vertical endomorphism defined as the (1, 1)-type tensor field S E  S:( TQ) 
with local expression: 

a 
a u "  

s = d q ' @  - 

For the sake of brevity, we give here only local expressions, referring to the literature 
for a discussion of the properties of the above objects in intrinsic, coordinate-free, 
terms. It is well known that S defines the endomorphisms 

s^:%(TQ)-*%(TQ) 

(s^xle)=: s(x,  e )  
(2.3) vx E %( TQ),  e E %*( TQ) 

and the dual endomorphism: 

(2.4) 

where ( I ) denotes the usual pairing between vectors and 1-forms. From the definition, 
it follows that 

s2=o (2.5) 

and 

ker j= Im s^= '?'( TQ) 

8" being the subset of a"( TQ) composed of the vertical vector fields (i.e.: X E 2'" 
iff TT. X = 0). 

A vector field r E E( TQ) is second order iff 

j r  = A. (2.7) 

Hence, the local expression of a second-order field will be 

For us, and from now on, a dynamical system will be a second-order field r on 
TQ. A function 2~ 9( TQ) is an admissible Lagrangian function for r iff 

Lr& - d 2  = 0 (2.9) 

O9 =: s d 2  (2.10) 

where 

is the Cartan 1-form associated with 2. A function 2 will be called a regular Lagrangian 
iff the associated 2-form: 

0, =: -d 0 9  (2.11) 

is non-degenerate, hence a symplectic form on TQ. In this case, there exists a unique 
dynamical system r satisfying (2.9). It will be called a Lagrangian dynamical system. 
As is well known, this will happen iff the Hessian matrix 

x =  IIH,II H~ =: a2z/au' a d  (2.12) 
is nowhere singular. 
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The relationship between a Lagrangian 2-form R2 and the vertical endomorphism 

R,(SX, Y)+SZ,(X, SY)  = o  V X ,  Y E  2?( TQ) .  (2.13) 
is expressed by the identity 

(For a proof, see, e.g., Crampin (1981).) 
In view of (2.5), (2.13) implies 

R,(SX, S Y )  = 0 vx, Y (2.14) 

i.e. that the vertical subspaces at every point are Lagrangian subspaces for a,. Also, 
(2.9) implies 

LrRp = 0. (2.15) 

We recall that, in turn, if a closed 2-form R satisfies (2.14), and LrR = 0 for some 
second-order field r, then a function 2 can be found such that R = R,, at least locally 
(Balachandran er al 1980). Finally, using Cartan's identity, one easily obtains the 
Hamiltonian version of (2.9), i.e. 

irR, d E9 E ,  =: ( L A  - 1)9.  (2.16) 

We now assume that the inverse problem for the given dynamical system r has at 
least two inequivalent admissible (in the sense of 0 1) Lagrangians, 9, Y f  E 9( TQ) ,  
and that at least one of the two Lagrangians, 9, say, is a regular one. 

Turning to the corresponding Lagrangian 2-forms SZ, and R9,, S Z 2  (at least) will 
be a symplectic form. We can then associate to the pair of inequivalent Lagrangians 
9, L?, a (1, 1)-type tensor field T E  Si( T Q ) ,  uniquely defined by the equation (Marmo 
and Rubano 1983, Crampin 1983b) 

(2.17) 

Equation (2.15) (which holds for both a, and aps) together with the definition (2.17) 
implies that T is invariant under the action of the dynamical vector field, i.e. 

LrT=O. (2.18) 

R,( Fx, Y) =: R,,(X,  Y) V X ,  Y E  E( T Q ) .  

Again, (2.17) implies 

R,( fx ,  Y )  = R,(X,  fY) vx, Y (2.19) 

and, together with (2.13) (Crampin 1983a), 

T *  S = S *  T. (2.20) 

Equation (2.20) is a compatibility condition between T and the tangent bundle structure 
of TQ. 

Conversely, if a (1, 1)-type tensor field T is given which satisfies (2.18)-(2.20), then, 
defining R' via the converse of (2.17), i.e. 

R'(X ,  Y )  =: a,( TX, Y )  (2.21) 
SZ' will be skew-symmetric (hence a 2-form) and will satisfy both (2.14) and (2.15). It 
will then be a Lagrangian 2-form (i.e. T will generate a new (possibly degenerate) 
Lagrangian) iff it is also closed. In what follows, we will need only properties 
(2.18)-(2.20) of T (plus some additional assumptions which will shortly be listed 
below). Therefore, the existence of the second Lagrangian 2" is not, strictly speaking, 
a crucial assumption. Rather, it serves mainly the purpose of exhibiting a sufficient 
condition under which a mixed tensor field exists with the required properties. 
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As f( f) is an endomorphism of 2?( TQ) (%*( TQ)) ,  one can pose an eigenvalue 
problem for f( f), at every point m E TQ, in T,( TQ) (T*,( TQ)) ,  and the eigenvalues 
will turn out to be smooth functions on TQ. It follows from (2.18) that (i)  the eigenvalues 
are all constants of the motion for r, and from (2.20) that (ii) the degeneracy of each 
eigenvalue is even (i.e. at least double). 

The Nijenhuis tensor (Frolicher and Nijenhuis 1956) associated with T is the 
(1,2)-type tensor field NT E Si( TQ) defined by 

(2.22) 

We now make the following assumptions on T. 
(Ai) f (resp f) is diagonalisable. By this we mean that, if A, ,  i = 1, .  . . , r c  n are 

the distinct eigenvalues of f and B i ( m ) ,  m E TQ, the corresponding eigenspaces, then 

NT ( X, Y )  = [ fX, FYI + f2[ X, Y ]  - f [ fX, Y ]  + f [ f Y, XI. 

(2.23) 

(that r c  n follows from (2.20)). 

Hence, if dim g j ( m )  = 2ki, ki will be independent of m and Xi=, ki = n. 
(Aii) The eigenvalues of f (resp f) have constant degeneracy throughout TQ. 

(Aiii) The Nijenhuis condition : 

NT=O (2.24) 

holds. 
The eigenspaces of any eigenvalue of f, by the assumption (Aii) of constant 

dimension, define a distribution on TQ. One of the main consequences of the Nijenhuis 
condition (2.24) is (Marmo 1982) that every such distribution is involutive, and hence, 
by Frobenius’ theorem, integrable. Every mixed tensor field T satisfying the above 
assumptions then yields r c n independent foliations of TQ, the dimension of each 
one of them being equal to the degeneracy of the corresponding eigenvalue. 

The leaf of the ith foliation through any point m E TQ will be called the ‘ith 
eigenmanifold’ through m. 

3. The main theorem 

Having established in 0 2 some general facts concerning mixed tensor fields associated 
with Lagrangian dynamics, we now turn to the proof of the separability theorem. In 
the notation (and with the assumptions) of 0 2, let 9l be the ith eigendistribution 
associated with the mixed tensor field T, i.e. 

m ( m )  = A9d, (m) .  (3.1) 

[r, 911 91 i = 1, . . . , r. (3.2) 

The assumed invariance of T WRT the action of the dynamical vector field r entails 

Hence (Marmo et a1 1985), r will be projectable WRT all the r foliations associated 
with the distinct eigenvalues of T. It follows that r will split into the sum of r 
independent vector fields: 
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At every point m E TQ, T c i ,  will be tangential to the ith eigenmanifold through m 
and will be a function only of the coordinates along the ith eigenmanifold. To be 
more specific, if {,$""}i = 1, . . . , r, s = 1, . . . , 2ki is a system of (collective) coordinates 
simultaneously adapted to the r foliations in a neighbourhood of any m E TQ, with 
the ti,', for fixed i, being coordinates for the leaves of the ith foliation, then 

A similar splitting can be easily proved to hold for R, R being (any) one of the 2-forms 
generated by the alternative Lagrangians for r. Indeed, by (2.19) 

R(X, Y )  = o  (3.5) 
whenever X ,  Y belong to eigenspaces corresponding to different eigenvalues of T. It 
follows that 

= a"' 
i = l  

and, in the collective coordinates introduced above 
n(l) = 1f)(I) dtf.JA dt1.k 

2 J k  (3.7) 
(sum over j ,  k, with i fixed). If R is non-degenerate, each one of the will be 
separately non-degenerate. Moreover, the closure of R implies the separate closure 
of a"', Vi. Indeed, we have from (3.7) dR = C i  dR'", and 

where 

= an:;)/at'." (3.9) 
and [. . .] stands, as usual, for antisymmetrisation of indices. Clearly, there is no 
possible cancellation between dR"' and any dR'", j #  i, so the dR"' must vanish 
separately. Moreover, vanishing of (3.8) also implies an$)/a,$J3s = 0, V j  # i, i.e. the 
coefficients of R'" can only depend on the coordinates along the ith eigenmanifold, 
as is the case for r. 

With these preliminary results in mind, let us consider the ith eigendistribution aI 
and the associated foliation of TQ. Let VTm(TQ) denote the vertical subspace of 
Tm( TQ) and define 

(3.10) 
We can in many ways find another subspace of 9,( m )  to supplement A,, i.e. a subspace 
R,(m) such that 

Ba,(m) = A,(m)OR,(m)  R,(m) n A,(m) = (01. (3.11) 

A,(m) = D,(m) n mm(TQ). 

We then have the following. 

Lemma. If dim Dt = 2k,, and the 2-form R is non-degenerate, then dim A,(m) = k,. 

Indeed, if S is the vertical endomorphism, JR,(  m )  G A,(m), hence dim(gR,( m ) )  s 
dim A , ( m ) .  ALet ,us prove that dim $RI = dim R,. If X ,  Y E  RI and are linearly indepen- 
dent, then SX,  SY ace also linearly independent. For, if there were two constants p, 
v such that pgX + vSY = 0, this would imply 

j ( p X + v Y ) = O + p X + v Y E A , ( m )  
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which would violate (3.11) (no non-zero vector of RI  can be vertical). So dim $RI = 
dim RI  and 

dim A, 3 dim R , .  

As dim A, +dim R, = 2k,, this implies dim A, 3 k,. 
Assume now R to be non-degenerate. Then, R'" will be a non-degenerate 2-form 

on each eigenmanifold belonging to the eigenvalue A n .  A, ,  being composed of vertical 
fields, will be an isotropic subspace for 0"). As the latter is non-degenerate, the 
dimension of A, cannot exceed k, and this achieves the proof of the lemma. 

Now let XI,  . . . , x k ,  be a basis for A, .  Via the symplectic form R, we can associate 
to each X, the 1-form 

def 
0, = i , R .  (3.12) 

Note that, as X, E 9,, ix,R = ix ,R(r) .  Also, using (2.13), we obtain 

iZ&, = isze, = R(x,, $2) = - R ( ~ X , ,  Z )  = o V Z  E %( TQ) (3.13) 

because X, is a vertical field. Hence 

Se, = o  (3.14) 

i.e. 0, is a 'basic' 1-form. In local bundle coordinates, the form of 0, will then be 

e] = eJ,k dqk eJ,k E 9( TQ). (3.15) 

Also, using (3.5), it is easy to prove that the 0, are eigenforms corresponding to the 
eigenvalue A, .  Indeed 

i Z h J  = i i z e ,  = ~ ( 3 ,  fz) = R( f ~ , ,  Z )  = A~R(x,, Z )  = AlizO,  V Z  E ac( TQ).  

Hence 

Fe, = AZe,. (3.16) 

The invariance of T WRT the dynamics r implies that its eigenvalues are constants of 
the motion for r. Then taking the Lie derivative of (3.16) WRT r, we easily find that 
L,O, is also an eigenform of T relative to the eigenvalue A , .  Therefore, as the Lie 
derivative of a non-zero basic 1-form WRT a second-order field cannot be zero, the e,, 
together with the Lr e,, will span the 2k,-dimensional space of eigenforms relative to 
the eigenvalue A,.  

From the already mentioned fact that ix,R= iX,R('), it follows that 0, can be 
considered as a 1-form on the ith eigenmanifold, and that the set of 1-form 

(3.17) 

can be considered as a codistribution on the same 2kl-dimensional manifold. From 
(3.12) and the fact that R is a Lagrangian 2-form, it follows that A, c ker 0. On the 
other hand, as dim A, = k, = dim ker 0, A, coincides with ker 0. As the Lie bracket of 
any two vertical fields is again vertical, and from the fact that 9, is involutive, it follows 
that A, is inuolutiue. Hence, the codistribution (3.17) is integrable, i.e. there exists a 
matrix llAv 11 of integrating factors: 

@ = { e , ,  . . . , 6,) 

A"ej = df' Ab,f' E a( TQ).  
Note that, if Z E g k ,  k # i, ize, = 0 entails 

iz df'= L.J=O. 

(3.18) 

(3.19) 
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Hence, again the f' depend only on the coordinate along the ith eigenmanifold. 
Moreover, as the 6, are basic forms, the functionf' can depend only on the q. Let us 
call f:,), r = 1 , .  . . , k i ,  the functions defined by the integrability condition (3.18). The 
set of functions 

F :  Q+R" F :  ( q 1 , .  ' * ,(I") + { f L ( q ) }  i = l ,  . . . ,  r ; s = l ,  . . . ,  k, (3.20) 

defines locally a coordinate change in the base manifold. The lifting of (3.20) to TQ 

(3.21) 

is a Newtonian transformation. Both the df;,, and (taking Lie derivatives W R T ~ )  the 
df{i) are, for fixed i, a basis of 1-form on the ith eigenmanifold. By duality, the (~3laf);~) 
and ( a / d f ) [ i )  will yield a local basis of vector fields. 

We have in this way achieved a generalisation of the results of Ferrario et a1 (1985) 
to the case in which the degeneracy of the eigenvalues of T is not the minimum one 
(i.e. double), and hence complete integrability of the dynamics is not granted. The 
proof that the dynamical vector field r and (apart from irrelevant 'gauge' terms) all 
the T-equivalent Lagrangians split into sums of independent terms goes through exactly 
as in the above reference. We can then summarise the results of this section in the 
following. 

Theorem. Let r E 2'( TQ) be a second-order vector field admitting a Lagrangian descrip- 
tion with a regular Lagrangian 6p E 9( TQ). Let T be a ( 1 ,  1)-type tensor field satisfying 
(2.18)-(2.20). Such a tensor will exist if I- admits alternative (inequivalent) Lagrangian 
descriptions. Let T satisfy (Ai)-(Aiii). Then one can find a Newtonian transformation 
(the canonical lifting to TQ of a coordinate transformation on the base manifold) 
leading to a coordinate system simultaneously adapted to all the foliations of TQ 
associated with the distinct eigenvalues of T such that: 

(i)  through every point m E TQ, the eigenmanifold associated with any one of the 
eigenvalues of T is the tangent bundle of a (base) manifold whose dimension equals 
half the degeneracy of the eigenvalue, 

(ii) both r, 2 and any of the T-equivalent Lagrangians split into the sum of 
independent second-order vector fields and ('modulo' irrelevant gauge terms) 
Lagrangians, one for each eigenmanifold. The 'components' of r and of the 
Lagrangians in each eigenmanifold depend solely on the coordinates on the eigenmani- 
fold itself. 

Whenever the assumptions of the theorem are fulfilled, the dynamical problem then 
splits directly into the sum of r independent, lower-dimensional, Lagrangian dynamical 
problems. In some cases, this can be of great help in integrating the dynamics. In the 
case of minimum degeneracy (k, = 1, Vi, and hence r = n), we are of course back to 
the completely integrable case considered in Ferrario et a1 (1985). 

As an application of the theorem, we will now briefly discuss a non-trivial completely 
integrable system, namely the Toda molecule (Thirring 1978). In this case, Q = R3 
and, in Cartesian coordinates, the system can be described by the regular (and in fact 
(Marmo et a1 1985) hyperregular) Lagrangian: 

2 = K - V  

K = !jsijuiuJ V = exp(q' - q 2 )  +exp(qz - q 3 )  + exp(q3 - 9') 
(3.22) 
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A = I I A ; / / =  

and of course 

1 0 -1  
0 1 -1  
1 I  I 
3 3  3 

(3.23) 

M = B  

It has already been proved in the literature (Antonini et a1 1985) that the requirement 
that the conditions expressed by (2.18)-(2.20) be fulfilled entails, in a coordinate system 
in which the 'forces' (i.e. the components of the vertical part of I') are velocity 
independent, that T be of the form 

A B B  
A B (3.27) 

B B A  

(3.24) 

A M A - ' = : G =  

with M: = M: and LrM: = 0 Vi ,  j .  Indeed, the fact that the same matrix M = 1 1  M:ll 
represents the action of T on the horizontal and vertical subspaces ensures the 
compatibility of T with the tangent-bundle structure, (2.20), while the symmetry of M 
ensures the fulfillment of the condition expressed by (2.19). 

Due to the structure of r (and of the Lagrangian 2'), the centre-of-mass motion 
can be, so to speak, split off from the dynamics, for example with the aid of the 
Newtonian transformation relative to the centre-of-mass variables given by 

Q' = Alq' U' = A:uJ (3.25) 

h O O  
0 h 0 (3.29) 
O O k  

(3.26) 
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i.e. that the transformation (3.25) actually diagonalises M (and hence T ) .  As (Ai) 
and (Aii) are satisfied by T, we now investigate the Nijenhuis condition. After some 
algebra, it can be shown that (2.24) is equivalent, in the present case, to the following 
set of partial differential equations: 

and 

(3.30a) 

(3.306) 

The meaning of (3.30) is best seen in a basis (see above) in which T (and hence M )  
is diagonal. If then M /  = Mi a/, MI = M2 = h, M3 = k, it can be easily shown that (3.30) 
yield 

ah ah 
0 i = l , 2  

ak ak 
au‘ -aQ’ 
---= 

In other words 

h = h(Q’ ,  Q’; U’ ,  U’) k = k(Q3;  U’). 

(3.31) 

(3.32) 

As both h and k are constants of the motion, and as the only constants of the motion 
which depend solely on the centre-of-mass coordinates are the functions of U 3 ,  we 
obtain, as a first result, 

k = k (  U 3 )  (3.33) 

U 3  being the centre-of-mass velocity. Therefore, any tensor field of the form (3.24), 
with the matrix M given by (3.27), and with the condition (3.33), will achieve the 
separation of the original dynamical system into two independent subsystems. 

As a final comment, let us remark that, up to now, the only condition on the second 
eigenvalue, h, is that it be a constant of the motion of the (reduced) problem (cf (3.32)). 
If we require the 2-form a’ generated via (2.21) to be a Lagrangian 2-form, we have 
to require it to be closed, as discussed in § 2. It is then again easy to prove that the 
closure condition on a’ is equivalent to the following equations: 

dh ah ah ah 
aQ‘ aQ’ au2 au1-O 

which, together with (3.32), entails 

(3.34) 

h = h( Q’ + Q’; U’ + U’) (3.35) 

i.e. that h should be a constant of the motion depending only on the centre-of-mass 
coordinates of the reduced problem. As, again, the existence of such a non-trivial 
constant of the motion would imply complete reducibility of the full problem, we 
conclude that the only possibility is 

h = constant. (3.36) 

We have in this way essentially recovered, along a different line of thought, an already 
established result (Antonini er al1985), i.e. that the most general alternative Lagrangians 
for the Toda molecule are generated by ‘fouling’ (Currie and Saletan 1966) the 
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one-dimensional part (centre-of-mass motion), and by multiplying the remaining 
(relative motion) part by a constant, i.e. by combining trivial means of separately 
generating alternative Lagrangians to obtain non-trivially equivalent ones. 

The same situation will emerge for n-body systems interacting with gravitational 
forces: the splitting of T will correspond to replacing original coordinates with ‘centre- 
of-mass’ and ‘internal’ coordinates. 

4. Discussion and conclusions 

The main hypotheses of the theorem proved in 0 3 are that the mixed tensor field T 
is invariant under the dynamics, that it satisfies the Nijenhuis condition and that it be 
compatible with the tangent bundle structure. Although in the example discussed at 
the end of § 3 the Nijenhuis condition may appear to be somewhat redundant as far 
as the goal of splitting the dynamics is concerned, the condition seems to play a crucial 
role in the proof of the theorem, as it is essential to prove the integrability of the 
eigendistributions of T. So, it is difficult to believe that the Nijenhuis condition can 
be relaxed, as it plays such a relevant geometrical role. 

In constructing the proof of P 3 we have instead been able to get rid of another 
rather stringent condition, which was essential in the earlier version of the theorem 
(Ferrario et a1 1985), namely the assumptions that the eigenvalues of T be nowhere 
constant: 

dhilm # 0 V m  E TQ, Vi. 

This was a technical assumption, with no geometrical counterpart, and, as again the 
example of 9 3 shows, it could become a too stringent one even in simple and well 
tractable cases. Also, the earlier proof just mentioned was restricted to the completely 
integrable case (minimum degeneracy of the eigenvalues of T ) ,  another condition we 
have been able to relax in the present paper. 

The main result of the paper is, therefore, that, for Lagrangian dynamical systems, 
the existence of a mixed tensor field invariant under the dynamics, satisfying the 
Nijenhuis condition and the condition of compatibility with the tangent bundle struc- 
ture, forces the system to split into a collection of lower-dimensional non-interacting 
subsystems. 

Such a splitting occurs in the Hamiltonian case as well (De Filippo et a1 1984), 
i.e. when the dynamical system is given on the cotangent bundle (and in Hamiltonian 
form). However, in that case, the coordinate system in which the splitting occurs arises 
in general from a non-fibre-preserving transformation, i.e. the original coordinates and 
moments are ‘mixed up’ in the new system. In other words, in the Hamiltonian case 
one can relax in a more natural way the condition of compatibility with the fibre 
bundle structure, thus allowing for more interesting situations to occur. For instance, 
in the two-dimensional central force problem, a suitable mixed tensor field can be 
found only if we relax the compatibility condition. 

The theorem proved in the present paper represents, therefore, a sort of no- 
interaction theorem for Lagrangian dynamical systems in the sense that the fulfillment 
of the Nijenhuis condition and the simultaneous compatibility with the tangent bundle 
structure are possible for a ( l , l ) - type tensor field preserved by a second-order 
Lagrangian dynamical vector field iff the dynamics itself is built up from lower- 
dimensional and genuinely non-interacting subdynamics. 
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